

97

Shifting codes: Locating the Intersections of the Real and

the Virtual Cultures of Photography

Ashwin Nagappa

Ashwin Nagappa works as Lead Technologist for a unique Education Technology

project anchored at TISS. Graduated as Computer Science Engineer, he has experience

of working for Multinational Companies in India and the US. His interest in

photography and film making led him to pursue higher studies. He recently completed

MA in Media and Cultural Studies from Tata Institute of Social Sciences, Mumbai, India.

He is currently working on managing software development for high school students.

His research focuses on the intersection of information technology, software,

communication, and learning.

Abstract

Software and digital photographs induce the ideas of spectacle as they produce control.

Irrespective of class locations all individuals are interacting with the above. There is

certain reconfiguration in the nature of producing, seeing, and sharing photographs due

to the intervention of software. The convergence of camera into a smartphone has

defined ‘sharing’ as the default function of a photograph. This convergence is on one

hand the progress in technology, on the other its nature has been determined as a

consequence of neo-liberal measures that have come into place in the last two decades.

Behind ‘sharing’ there are several algorithmic discourses (in turn defined by hegemonic

discourses in the society) which govern our relationship with photographs and the new

ways of the communication.

This study attempts to understand the relationship between users and digital

photographs in a communication system based on the calculation (and transformation)

of information, by looking at the process of producing photography software. It argues

that the decisions defined in a camera software is driven by the hegemonic discourses

98

and institutions of the society, rendering digital images more than just a remembering

tool.

Keywords: digital photography, software, algorithms, algorithmic discourses, hegemonic

discourses, virtual cultures

Among the several neo-liberal changes we have experienced in India over the past 15 years, the

way we look at things around us using electronic devices is significantly on top of the order. We

are constantly using electronic screens in one form or the other, we are capturing images with

small handheld devices or images of us are being captured by several CCTV cameras. We are

now accustomed to experiences mediated through electronic devices operated by software. We

live in an age where cameras, software and digital networks are ubiquitous. Many of these

changes have come to existence after the political and economic changes across the world in the

past three decades.

Photography has evolved over the years from an enterprise of science to an apparatus of science,

it serves as an instrument in scientific experiments unlike the time photography itself was being

discovered through science. It is also an instrument of art (Winston 1993), a surveillance/control

mechanism, a producer of incontrovertible proof of things that occurred, and a social rite

(Sontag 2008). In spite of a shift from a photo-chemical process to a photo-electronic process,

photography retains its prime function of repeating mechanically “what could never be repeated

existentially” (Barthes 1993:4). Enabled by software, these functions converge seamlessly in

digital photography, transforming both the nature and the future of the form itself.

Digital photography as a ‘way of seeing’ has transformed how we understand the term ‘image’.

Mark Hansen (2001:58) defines the digital image as being beyond the “position of an observer in

a ‘real’, optically perceived world”. Discussing the digital image Crary (Crary 1990 cited in

Hansen 2001: 58) notes, “If these images can be said to refer to anything, it is to millions of bits

of electronic mathematical data”. Digital camera in Winston’s (1993) words is an ‘instrument of

inscription’ which produces data for modern science. With the convenience to disseminate the

99

electronic data easily, digital photographs can be effectively used for the function of surveillance,

power, social rite, etc.

Today, a smartphone camera can not only capture the light, it can also capture and transmit

other metadata about the user and her/his location along with the image. Therefore,

photographs in the age of digital imaging are not just ‘experience captured’ as Sontag (2008)

opines. While experience is one aspect in the digital camera, other appropriations can be derived

from the bits of electronic data in the photograph. Digital photograph allows appropriation of

aspects lost to the optics of the camera allowing a larger degree of power to the possessor of

information. While Sontag’s (2008:5) description of photography as “a social rite, a defence

against anxiety, and a tool of power”, applies to digital photography, another aspect of power

namely the control over data becomes significant. I would like to argue that a digital photograph

can therefore be referred to as an assemblage, with multiplicities which “has neither subject nor

object, only determinations, magnitudes, and dimensions that cannot increase in number without

the multiplicity changing in nature” (Deleuze and Guattari 2013:7). This assemblage in a digital

photograph allows it to be used as forms of control much as Sontag (2008:) points,

“Photographs were enrolled in the service of important institutions of control, notably the family

and the police, as symbolic objects and as pieces of information”. Consumers of digital

photography apparatuses are producers of information that is consumed by software elsewhere

for purposes they are oblivious of.

Software

In the above discussion, there was a constant reference to the entity that enables images to be

digital, i.e. the software. Electronic devices/cameras enabled by software are now ubiquitous. We

inevitably interact with software in some form or the other. Chun (2011) elaborates how the

hardware of a computer will only be useful when it has been programmed to work according to

the instructions of its user. Software is necessary to make the machine work for our needs. As

Chun (2011:19) puts it, “Software emerged as a thing — as an iterable textual program —

through a process of commercialization and commodification that has made code ‘logos’, code as

source, code as true representation of action, indeed, code as conflated with, and substituting for,

action”. Thus, software is placed in a position of power. The knowledge-power structure can be

considered as the core of the software.

100

‘Software’ as we refer to it here, is an assemblage of several coding languages, compilers and an

executable code that allows users to run a series of instructions. Users of proprietary software

can experience and consume the software, yet they can neither understand nor transform this

assemblage completely. The ability to access and modify this software assemblage is restricted to

a few people across the world, whilst the ‘end products’ reach a large more number of people.

Software developers hence acquire positions of power in society. The hierarchy/control is subtle

and accepted unquestioned.

Thus, the digital ‘way of seeing’ can be argued as seeing through the software or experiencing

imaging through software rather than experiencing the images as they are, i.e. without applying

any manipulation when the image is created (in a film camera the photographer had to decide the

parameters to compose an image as compared to digital where the algorithm predefines the

parameters). This way of seeing is internalized by the software developers by determining the

ways of composing photographs using the camera software embedded in the electronic device,

what I would like to refer to as digital camera assemblage. In this assemblage, I would like to

argue, supplementary to the combination of optical components, electronic hardware and

software, several social and cultural practices are algorithmically embedded. The intervention of

software reconfigures the process of producing, seeing, and sharing photographs. This study

attempts to explore the intervention and reconfiguration we experience in our interaction and

communication with digital cameras.

Rationale

There are several studies that explore the relationship of software and photography, influences of

software on photography or the life of a digital photograph; they do not make sufficient

connections between the individuals or corporations who create the software and the individuals

who consume them. Thus, it is necessary to study the nature of software development and

factors that drive the consumption in digital photography, given that both software and

photography are being driven across the world by few technology giants.

Stuart Hall (Hall 1997 cited in Rose 2007: 2) notes, “Primarily culture is concerned with

production and exchange of meanings”. “The algorithmically enabled interplay between the

viewer’s position in the physical world and this virtual information layer is transformative,

creating sites of meaning and enabling action” (Uricchio 2011:33). These sites of meanings are

governed by corporations and hegemonic forces through algorithms. Meanings are being

101

determined objectively, hence influencing our cultural practices, which are otherwise construed

from our subjective experiences. It is therefore necessary to understand the role of algorithms in

digital communication and their influences on our discourses or cultural practices.

Research Method

As a software developer and a photographer, I could locate myself in a space where I could draw

connections between the two practices. Here I perceive software as an intervention rather than a

tool of convenience because, my actions and experiences in photography were often determined

by functions embedded into the camera. This study is based on semi structured interviews with

two software engineers working on developing software for smart phone cameras. Bound by

non-disclosure agreements these engineers have provided generic information about the steps

involved in developing camera software. In addition, I analysed a basic OpenCV1 Algorithm to

understand the functioning of the algorithm in camera software.

Developing an Eye

Though the first computer was invented in the 1830s, around the same time as photography

came into existence, it did not gain popularity like the latter since, computer unlike a camera did

not reproduce reality yet, nor did it have utilities or purposes in human life yet. After over 150

years, computers could perform as a camera by capturing, processing light, and storing it as

information. Photographs are created by capturing the light incident on a semiconductor sensor

and storing them onto a storage device. Photographs as media became programmable since an

image could be described as a mathematical function and could be subjected to algorithmic

manipulation (Manovich 2001). This convergence of camera and computer has got us to a point

where the photography device is almost invisible. Photographs can be captured by devices that

are almost invisible to human eyes and at unimaginable speeds.

1 The OpenCV library has more than 2500 optimized algorithms, which includes a comprehensive set of both
classic and state-of-the-art computer vision and machine learning algorithms. Along with well-established
companies like Google, Yahoo, Microsoft, Intel, IBM, Sony, Honda, Toyota that employ the library, there are
many startups such as Applied Minds, VideoSurf, and Zeitera, that make extensive use of OpenCV’ (“ABOUT |
OpenCV,” n.d.).

102

Digital Camera Assemblage

Most electronic devices that are popularly used today such as digital cameras and smartphones

are loaded with software that cannot be easily deconstructed and understood. Unlike early

photographic technologies like Daguerre's device2, digital cameras are much smaller and faster;

thus, obscuring from human vision the process of capturing light. The assemblage in digital

cameras (referring to both digital cameras and smartphones) allows us to communicate with the

electronic hardware using human senses of vision, speech, listening and touch. Often an

electronic device is practically of no utility if there is no software to make the components work3.

Similarly, digital cameras in all forms today are assemblages of different kinds of hardware and

software. With increasing magnitude and dimensions of hardware capabilities, complimented by

software that can perform instructions at higher speeds the camera is able to achieve vision that

can match the principle of accommodation of human eyes4.

Keeping aside the hardware section of the camera if we are to look at the software alone, the

structure of the software in itself is an assemblage of several languages, encoders, and compilers.

The software that runs on a device is a compiled version of a program written using language

such as C, C++ which can be interpreted in English. This is possible due to comments that are

embedded in the source code, and also due to English-based commands and programming styles

designed for comprehensibility (Chun 2011). These programs are a set of instructions which are

to be executed by the device. However, the program in its original form cannot be interpreted by

the electronic hardware, hence the C or C++ program is compiled in order to translate it into an

intermediate assembly language and then into machine language. The final compiled program is

the software that is embedded into the device, allowing the functioning of the device. Given the

competition among camera companies, the final software product is encrypted so that the

algorithms and functions cannot be deconstructed. Additionally, this encryption can conceal

from the users the functions of surveillance and control embedded into the camera. Thus, the

digital camera that we use to see the world is, paradoxically, itself a ‘black box’; its functioning is

hidden from view.

2 The device was bulkier and involved chemical coated plates. Image was captured by the chemical process
which took considerable time.

3 Unless a sequence of steps can be programmed in the hardware using electronic components, it is unlikely to
build functions of a camera using hardware programming alone

4 The iris and the muscles of human eye adjusts itself to adapt to any given light situation to be able to see the
surroundings.

103

We have arrived here due to the contribution of hundreds electronic scientists /engineers,

thousands of software developers and millions of workers making components for these

cameras. Studying the entire cycle, from the conception of a camera, to manufacturing of

components, development of software and the eventual release and use of the product, could

give a deeper insight into the influences of technology on the transformation of visual cultural

practices. This paper will focus specifically on understanding the process of developing camera

software since it seemingly has a significant influence on the visual cultural practices today. Dijck

(2008:58) notes,

Recent research by anthropologists, sociologists and psychologists seems to suggest that the increased

deployment of digital cameras – including cameras integrated in other communication devices – favours

the functions of communication and identity formation at the expense of photography’s use as a tool for

remembering.

Berry’s (Berry 2008 cited in McCosker and Milne 2014:6) concept of code “as a literature, a

mechanism, a spatial form (organisation), and as a repository of social norms, values, patterns

and processes,” could allow in understanding its implications on cultural practices.

Software Development

Given the challenges discussed earlier, gathering information from engineers was a difficult task.

I was able to contact two engineers working on two different aspects of camera software.

Engineer1 was part of a team that developed application which can be used to preview and click

photographs remotely. Engineer2 was part of the testing team where camera software was tested

before it was embedded into the smart phone.

Engineer1 is part of a team which had earlier developed a camera trigger5 app6, to remotely

control a camera using a smartphone. He is continuously involved in developing applications

around the camera component for smartphones which can be downloaded and installed by users

themselves. There are several stages of development, each of them handled by different teams.

Broadly the development begins with the research and requirements gathering team, they define

5 Trigger here refers to remotely releasing the camera shutter. Earlier the triggers were wires attached to
camera or wireless radio frequency remote control. In digital photography, a trigger is a software in which the
photograph can be previewed

6 The software applications that are running on the portable devices are being refered to as app.

104

the work to be done. It is then passed onto the development team who develop the software.

The developed software is then tested by a testing team, who test for the accuracy of the

functions. The software could have multiple iterations of development and testing before it is

finally given to the marketing team for dissemination.

Engineer1 was able to describe the entire cycle of development since he was also overlooking the

execution of the complete workflow. Before any new app is developed the research team would

identify the potential features or functions that could be built into software which is not already

present. Their research includes an in-depth analysis of apps already available in market and

information gathered from the Internet regarding the same. The method employed by this team

was not exhaustive; they were only looking to develop features that would be new and could be

extensively used. The larger goal of the requirements team is to develop a software product that

would profit the organization, without much consideration of its social or cultural implications.

Based on the requirements, developers check the feasibility of building the final software.

Factors such as hardware abilities, firmware versions, available APIs (hardware and camera

manufacturers often offer software to configure the hardware), primarily determine the feasibility

of developing the software, apart from the cost and labour considerations. If the project is

considered feasible, the development process begins. Most of the development is being done

using Object Oriented C or C ++ languages. In some cases, the SDK7 (software development

kit) is provided by the hardware firm. In the process of development, the engineers develop use

cases (potential user profile), develop flowchart and information architecture before these

artefacts are coded in the necessary programming language8. Once developed, the program is

compiled into an executable format and tested in a local environment9 for errors. The primary

objective of the development team is to develop a program that can carry out the specified

number of functions defined by the requirements team.

Once the development is finalized, the program is given to the testing team to test the features

and check its compliance to the requirements determined in the initial phase. The first phase of

7 Software Development Kit (SDK) is a collection of software used to develop applications for a specific device or
an operating system.

8 The software backend that executes crucial functions are developed with C or C++. A frontend interface to
access these functions is developed using programming languages like Java, HMTL, CSSS etc.

9 The programming is done using a programming interface in which code can be written in a particular language,
compiled and tested to see if the program runs as expected. Small units are coded first and tested
independently to check if they give appropriate output, only then it is integrated with other modules.

105

testing is conducted in a simulated environment, where a computer program behaves like the

camera hardware10. The software is then tested on the final hardware where it is supposed to be

used. The testing team also checks if the software products carries out the specified functions as

required or not. A visual expert is consulted once during the testing to get a final approval with

regard to the quality of the output. Throughout the process this software is perceived as a

product rather than a visual tool. The development is done to build functions that will be used as

visual tools in photography. The software product is tested to check if it performs within the

stipulated time to produce machine vision that resembles human vision.

Two significant components of the process were, developing image manipulation features and

social media integration. Basic image manipulation functions were built into the software by

using ready to use modules. And as a default, features such as Facebook and Twitter buttons

were integrated into the app. thus providing the convenience to click, edit, and share the

photograph on social networking platforms. This enhances interactivity since, in a networked

environment, users not only interact with the media but also with other users using the media.

As Engineer1 says, “it is one of the essential elements a camera app is expected to have”.

Engineer2 was a testing engineer who was concerned only with testing the modules he was

assigned. He worked primarily with camera software on smartphones, thus limiting the scope of

the development to the specified hardware. He would be given the specifications of the software

and the expected performance. All the expectations of the software are quantitatively defined.

Several parameters such as camera on time, shutter snap time and colour levels are all precisely

measured. Only when all the parameters meet the required levels, the software is considered

ready for launch. Throughout this process the camera is never physically used. The camera

hardware is determined based on the design and requirements identified in the earlier stage. The

software development does not wait for the hardware to be ready; software is developed in

parallel to the hardware development. As Engineer2 says'

Developing app is the last task we do. We begin with hardware abstraction. We are more concerned with

the APIs and function calls. We are also dependent on the Software Development Kit (SDK).

Depending on the requirements and hardware specifications we need to determine what function call

corresponds to capture photograph or record video or stop the recording.

10 Electronic devices that are themselves computers with powerful CPU (central processing unit), RAM (random
access memory), storage and display, can be simulated on other computers with similar or better specifications.
One computer can, therefore, be used to simulate several camera models.

106

Based on hardware specifications a camera is simulated on a computer which would behave as

the final camera is expected to. The software can work independent of the optical components

of the camera. This substantiates the earlier argument that photography is now an electronic

process. Once the software is considered to be good enough, it is loaded onto the hardware and

tested to check the actual performance. It is then tested by photographers or experts on design,

before the smart phone is launched into the market. While Engineer2 was only concerned with

the testing of the camera component, the device goes through a series of developments and tests

that define the other functions of the smartphone. This device could deceptively become a

mechanism of control. Software can thus encapsulate our actions and experiences as metaphors,

thereby proliferating mediation.

Two ends: Engineers and Photographers

Both the developers called themselves 'casual' photographers who often took photographs with

smartphone camera. Talking about hacking camera software, Engineer2 states, “perhaps only a

few curious engineers would work on hacking the camera software to try new things. I am not so

keen about photography, so I do not think so much in terms of hacking the software”.

Both engineers were confined to a standardized process, and their task was to develop

standardized products. Though these products which contribute to visual cultural practices, in

this standardized environment engineers carry out tasks as they are expected to, without

reflecting on the broader functions of the software. In the case of both engineers very little

consideration given to visual cultural practices while the software was developed. Though

contemporary visual practices induced by technology feedback into the system for developing

newer software products, it is however largely within standardized framework defined by profit

oriented technology or industry.

Given this nature of software development, definition of variables is restricted to the individuals

who define the requirements to the developers. The variables defined by them are largely

influenced by their cultural location which is propagated to many other individuals who use the

software. The sense of freedom or choice is much limited; perhaps it imbibes values into users as

defined in the software.

107

There are attempts in the free software movement11 to develop software not driven by profit.

Though the free software movement attempts to gain political importance, they cannot match

the hardware production or integration as done by big corporations. With the availability of low

cost labour (Fuchs 2014) in countries like India, software firms are growing at much higher rate

as compared to the growth of the free software movement through a collaborative network.

Reuse: Programs and Programmers

It is interesting to note that a software code is rarely written from scratch. Many re-useable

programs and modules are assembled together to build the desired product. Object oriented

languages are now widely used since the language allows us to write several modules

independently, each of which can perform different functions depending on the context in which

it is invoked. Additionally, there are several modules to perform some standard operations built

into the library12 (basic functions of mathematics, graphics etc.).

In the context of reuse, coding includes knowing what exists in the library that can be used to

achieve the new functionalities. One such library called OpenCV (Open Computer Vision), that

was developed by Intel Corporation and made available in the public domain, contains several

programs and algorithms for the functioning of a camera., a major technology multinational

developed and shared OpenCV (Open Computer Vision) code in public domain. It had several

programs and algorithms for the functioning of camera. Engineer1 mentioned that OpenCV is

one of the libraries they refer to while developing the software. With modular programming

practice small functions can be developed and tested independently and these smaller modules

can be integrated into one large program by joining them like pieces of a jigsaw puzzle. Often,

for software developers the social functions of the software13 or its larger consequences are not

primary concerns. They simply follow instructions given from a superior. An independent

developer or smaller firms have the freedom to think about broader perspectives or larger

consequences of their software. Here I would like to argue that developers can themselves be

treated as re-useable modules that can be invoked or replaced as per the needs of the product or

11 Free software movement is a social movement started by Richard Stallman to develop and disseminate
software that ensure user's freedom.

12 A predefined program/s or piece of software code that performs a defined set of functions and available for
reuse.

13 Individuals interact with software in many ways directly or indirectly, like billing systems, Kiosks, Smart
phones, Government systems.

108

business14. Engineer1 or Engineer2 are trained such that they have certain competences to

perform specified tasks. They are one among the many who can code the program as needed for

the software product. One can be replaced by the other conveniently to keep the development

process going or keep the product functioning over its lifetime. There is a certain level of

abstraction with respect to the labour aspect of software development. In fact, technology can be

rendered so efficient that a significant part of the development or testing process can be

automated, eliminating the need for engineers to intervene. In contemporary coding practices,

use of graphical user interface to write a code15 reduces the effort required for coding,

subsequently reducing the overall cost of software development. These abstractions are

“compatible with the overall trajectory which governs computers development and use:

automation” (Manovich 2001); the nature of automation is governed by the hegemonic structure

persisting in the society. In the Indian context, I believe the functions of software and the

process of automation would be defined by the upper class and upper caste section of society.

Their political and economic privilege empowers them to define the functions of technology and

the patterns of consumption. Though individuals from all classes are influenced by software

directly or indirectly, only the higher classes/castes are reaping the benefits of technology. There

are fewer avenues for a large section of lower class/caste individuals to indulge in software

development. I believe even if a small number of software developers from lower class and

lower caste manage to be part of the system, they have to adhere to the framework defined by

the upper class/caste individuals. Also, they retain attributes of the former only to strengthen the

hegemonic structure. In an Indian context, the “disciplining of programmers” (Chun 2011:35)

disempowers the developer from using technology to address social issues or inequalities, whilst

strengthening corporations and hegemonic frameworks. Though I would like to argue about the

presence of caste hierarchy in the software industry, I cannot prove the same empirically in this

study. A dedicated study introspecting the caste and class economy of software developers could

substantiate this argument or bring forth new findings.

14 ‘In US crisis management and crisis communication literature and research, the connection between crisis and
risk is framed not as how to protect people from organisational disasters—the catastrophic events that harm
environments and people—but rather how to protect capital or the organisation, its managers and their
reputation from the disdain, anger and rage of those who have been wronged or even hurt, within or outside
the organisation. In this way organisational crisis management moves quickly through crisis communication to
seek recovery and resolution, the restoration of its image and profitability’ (McCosker and Milne ibid.)

15 For Example: Android's Intelligent Code Editor is described thus: ‘At the core of Android Studio is an
intelligent code editor capable of advanced code completion, refactoring, and code analysis. The powerful code
editor helps you be a more productive Android app developer. There are several other coding platforms for
other coding languages as well’ (“Download Android Studio and SDK Tools | Android Developers,” n.d.).

109

Though technology gives individuals the freedom to develop their own solutions, popular

software products/services determine the patterns or features16 that are being developed. Hence

camera software developed by companies like Canon, Nikon, Apple, Samsung, Microsoft etc.

hegemonize the industry. They are constantly working to converge the single purpose digital

camera into a smart phone17. Therefore, I would argue that these global camera and software

manufacturers influence the way visual cultural practices are being shaped across the world.

Unlike a film photograph, digital photographs from a certain model of camera would have

certain sameness. A photograph developed on film with same model of camera would not have

the sameness since, the chemicals used to develop and paper used to print the photographs

would vary from one place to another. With a given model of the camera the film being used

varies. Similarly, when a film is being developed the nature of chemicals also varies. And later

when the film is developed into a print the kind of paper and ink will differ. It is almost as if

each photograph on a film or print is unique. However, certain camera/camera phone model,

will always produce same result each time. If two identical digital cameras are used side by side

the results produced will be same. This sameness in a digital photograph, I would argue is a

result of the algorithmic discourse that persists in the system. I would define algorithmic

discourse as a series of events that attempts to achieve the same result for a given set of

conditions, by repeating a finite number of steps with precision. Though developing a film also

involves repeating the same number of steps the external conditions or the precisions cannot be

repeated every time, it does not behave algorithmically. Therefore, I believe algorithmic

discourse can be considered as blinkers that restricts our visions.

Blinkering Vision

In digital photography unlike the chemical reaction on incidence of light, light incident on a

sensor (a semiconductor device) is captured and translated into zeros and ones (rather, the light

is captured as an electronic signal which is represented with these arbitrary values). As Hansen

(2001:60) notes, “The digital image has only an ‘electronic underside’ which ‘cannot be rendered

16 Most photography apps today come with readymade filters and standard editing functions. Camera controls
are seldom manual on smartphones nowadays. Easy to use/one touch features are introduced by global leaders
in phone manufacturing such as Apple, Samsung etc.

17 Samsung’s Galaxy camera is a suitable example. It runs on Android (software running on smartphone) it
promises faster connectivity and easy sharing (“Samsung Galaxy Camera Price India, Galaxy Camera Features,
Specifications,” n.d.),

110

visible’ precisely because it is entirely without correlation to any perceptual recoding that might

involve human vision”.

The electronic/binary data has to be recoded back into a representation that is recognizable to

human vision. Computer vision achieves this by passing the binary information through a series

of steps so that the binary information can be transformed back to seem like a natural scene on

the display. Perception is disembodied into a device (Hansen 2001) through the automated vision

achieved in digital camera assemblage (receiving light at the sensor and displaying on a screen),

whilst producing ‘an acceptance semblance of reality’18 (Goldsmith 1979 cited in Manovich

2001:171).

In automated vision, the sensor is made up of units called pixels. Light incident on each pixel is

saved as binary information into a storage unit designated as a pixel. Information for each pixel

is processed through a series of algorithms before they are represented on a screen constituted of

pixels. The algorithmic process is crucial since the light captured on the sensor has to be

transformed into a form that can be emitted through the screen. “Algorithms take many forms,

and no digital camera or computer-based viewing system would be complete without them”

(Uricchio 2011: 31). Algorithms are a sequence of steps where the pixel is subject to a

mathematical function and a numerical value is assigned to it. The pixel is processed by several

algorithms. The decisions of photographic parameters are mapped mathematically in the form of

algorithms, and are applied to all the pixels. The decision-making mechanisms are embedded into

the device. If one is using a camera in automatic mode, the camera determines all the parameters

for the user. In manual mode, the device adapts to the exposure, white balance, metering

determined by the user, nonetheless algorithms function here as well. While algorithms that

control exposure can be experienced through the interface, there are several other algorithms

that run behind the scene to enable the computer vision. Therefore, it is almost as if an

algorithmic discourse determines what we can see and capture through the screen of a digital

camera.

Edge Detection Algorithm

One of the essential algorithms in a digital camera would be the edge detection algorithm. Since,

“if the edges in an image can be identified accurately, all the objects can be located, and basic

18 Manovich draws from Goldsmith’s initial discussion of the term is in relation to film industry.

111

properties such as area, perimeter, and shape can be measured. Since computer vision involves

the identification and classification of objects in an image, edge detection is an essential tool”

(Parker 2010:21). Detecting edges is one of the initial mediated steps in the process of seeing in

the digital camera. Given this importance of detection of edges, there are several edge detection

algorithms. Each of them involve defining the edge (the output/result to be achieved), defining

different variables that are necessary to prepare and solve the equations, eventually to be able to

detect edges. Developing an algorithm is purely a mathematical process. Digital camera

algorithms create the possibility of seeing, through a mathematical process. The objective of

these algorithms is to make a computer capable of reproducing the experience of perception by

human beings and to match computer vision with human vision to the extent possible. Only

then the photographs could perhaps come close to ‘real’ and attain its functions. One would

always prefer a sharp photo over a pixelated phot. An edge detection algorithm is therefore

important for mapping the edges appropriately.

Among several edge detection algorithms Canny edge detection algorithm is known to perform

optimally and it is widely discussed (Parker 2010). By analysing the flow chart and the code for

Canny edge detection algorithm, I attempt understand partly the algorithmic discourse that is

embedded into the device.

The edge detection algorithm detects the edges by estimating the pixel density and narrowing

down the edges based on the gradient. Canny edge detection algorithm addresses three issues

that persisted in the earlier algorithms in order to optimise the performance in detecting edges. It

ensures all edges are detected without missing one. There is little deviation between the edges

detected from the actual edges. And multiple edge pixels should not be detected in place of

single pixel edges.

The flowchart in Fig. 1 shows the broad sequence of steps a photograph or information passes

through. Every scene we see on a digital camera display is a photograph in itself, but it is never

saved until we press the shutter release. The continuous scene we see through a screen is

constantly being processed within the device to produce images that appear real. In the first step

of the flow chart the excess information, called noise is reduced so that the processor can easily

isolate the pixels at edges in scene.

112

Fig. 1

This is done by passing all the pixel information of the photograph through a mathematical

function that appropriates the numerical values of pixel, so that it assigns a higher number to the

113

edge pixel as compared to other pixels that do not form an edge. This noise reduction process is

repeated again in the following step of the algorithm to further reduce undesirable elements.

Once unwanted (as perceived by the computer based on pre-set values) light information is

reduced, in the next step the edges are isolated further and non-edge pixels are blackened. An

edge is identified by recognizing a pattern in the scene. When light is incident on an edge it

forms a solid line of a certain colour. The adjacent pixels get lighter as we move away from the

edge. An edge pixel would have a greater numerical value as compared to the others. Each pixel

in the photograph is passed through a mathematical function that compares the numerical value

of all neighbouring pixels and continues processing in the direction of pixel with a greater

numerical value. This is repeatedly done until pixels with maximum value is encountered, which

is marked as an edge pixel (changed to colour white, since white has the largest value on RGB19

scale). While the process keeps searching for the pixels with maximum numerical value, other

pixels with lesser value are set to black. Thus, pixels on the edge are isolated as white lines on

black background.

In the final step of Hysteresis the photograph (edges marked in white) is passed through a clean-

up process. Two threshold values are defined; one, higher threshold, all pixels with value greater

than the higher threshold are edge pixels. Two lower thresholds, all pixels above the low

threshold are also associated to the edge pixel. Any pixel which has a numerical value less than

this range is set to black. This process is repeated multiple times in a loop, till perhaps the

difference between high and low threshold is minimum or till the scene changes. The final

output photograph contains edges sharply distinguished in white over a black background. This

output photograph can then be sent across to other algorithms depending on the flow

determined. For example, a face detection or pattern detection function can use the edge details

to determine the face or patterns within a photograph.

The algorithm when implemented on a C program works using a 'for' loop. For each pixel, the

functions are applied to determine the edge pixel. The whole function could run within fraction

of a second. The function based on comparison attempts to isolate the edge pixel by running in a

loop till certain conditions are met. Often the conditions for the 'for' loop is determined

19 RGB: Red Green Blue, the primary colours. In computers, each is represented by a number in the range 0-255
(28, 8 bit processing). The lowest colour in the range is black (0,0,0) and the highest colour is white
(255,255,255).

114

dynamically based on the photograph in question. If the conditions are not determined correctly

the algorithm would not function fully.

Examples

The descriptions of the steps involved in the Canny edge detection algorithm gives a sense of its

function, but it can be better understood by seeing the results of the algorithm on a screen.

OpenCVd220 , an application on android phone displays results of several OpenCV algorithms.

Using this tool, I have explained the working of the Canny edge detection algorithm

Fig 2.a Fig 2.b

Fig 2.c

Here, Fig 2.a is a wide-angle photograph of a studio chair. The edges are more or less accurately

marked. However, in a narrow shot of the chair the fabric seems to have much finer edges as

seen in Fig 3.b. The fine edges are visible to the human eyes from the same distance where wide

photograph was taken, but the algorithm cannot isolate them from that distance. Only when the

20 Developed by Barry Thomas the app is available for free download, it ‘takes the video feed frame by frame,
processes the data and overlays the results onto the frame before displaying it on the screen’ (“Machine
Vision,” n.d.).

115

camera is closer to the subject, the edges of the fabric are determined. Basically, the algorithm

does not work to match the principle of accommodation of human vision. In case of a single

input in Fig 2.b, the scene is constantly processed till all edges are identified. For instance, in Fig

2.b the edges of the threads have partially appeared. If the camera was held for a longer time,

other threads would also emerge slowly. Fig 2.c is taken by holding the camera close to the chair

and including the edge of the chair, the threads are clearer here. The input is repurposed

constantly till a satisfactory result is achieved, the algorithm can never give an absolute result

either i.e. computer vision cannot match human vision yet in form and function. The mediation

is limited to definitions and capabilities of the device. This limitation of the algorithm results in

an image that lacks an output recognizable by our vision.

Further, social networking platforms such as Flickr are developing new algorithms to identify the

content of a photograph beyond the metadata. The new product running on Hadoop21 can

recognize the shapes or objects with in a photograph, this helps in tagging the photographs with

appropriate tags so that the photographs have better search visibility. To train the system to

recognise the shapes/objects correctly a sample set of valid cases are created and another larger

set of invalid cases are prepared. The algorithm runs through both the sets and produces a set of

features to validate certain shapes/objects. For example, to train the system to recognize flowers

10,000 valid examples are processed and 100,000 invalid examples are processed. Based on the

calculation a set of features (shape, dimension, texture etc.) are listed down and saved to the

database. Every time someone uploads a photograph of flower, the features of that photograph

are mapped onto the list of features in the database and it is tagged as a flower automatically if

certain predefined features match. The algorithm is perfected by processing many invalid

examples to train the system to recognise what is not a flower. The scales of both the sets of

examples are huge, hence letting the algorithm develop a comprehensive set of features.

A Conditional Realm

Manovich (2001: 60) defines algorithm as a “sequence of steps to be performed on any

data...which potentially can be applied to any set of media objects”. It is also a sequence of

decisions that is applied to the data depending on the conditions that are met. Algorithms can

thus be defined as a set of rules that is applied on data, rules that interpret the binary information

21 ‘The Apache™ Hadoop® project develops open-source software for reliable, scalable, distributed computing’
(“Welcome to ApacheTM Hadoop®!,” n.d.).

116

and present them to us in forms we can recognize. A past moment in time can be captured as a

digital photograph, giving that moment a material existence, whose form is determined by the

algorithms that are embedded into the camera. Algorithms enable the processing of light

information to be interpreted as a moment in time, thus making software a metaphor “for the

mind, for culture, for ideology, for biology, and for the economy” (Chun 2011:55). Depending

on the decisions that a data passes through it could attain a different meaning. It can be

perceived as a different metaphor.

Relatively our lives are highly conditional, where all events are consequences of a series of factors

or other events. Unlike algorithms, there are no concrete definitions of the conditions we come

across. Therefore, by using devices with algorithms embedded in them, our experiences are being

mediated based on a finite set of conditions defined in the algorithm. The number of possible

outputs (metaphors) is also finite. By separating the interface from the algorithm software

becomes unknowable, making it a metaphor for a metaphor as Chun (2011) argues. In contrast, I

would like to argue that by obscuring the algorithms (conditions, decisions, and sequence of

steps) software is made unknowable. Since the algorithm (mathematical equations and

programming language) cannot be accessed and interpreted by everyone. It is not perceived as

new media object like a digital photograph (light information captured, stored and appropriated).

Algorithms cannot be consumed like a new media objects, nonetheless our actions and

consumption patterns are constantly being guided by them. A knowledge practice that makes the

algorithm visible is built out of the present practice of digital photography. To give an example,

as a user to compose a digital image I would consider a limited number. Starting with turning on

the camera, composing the frame through the digital display or eye piece, click a button and

preview the end image. Within this process, the camera software would calculate the light and

colours, and adjust the settings to the given light. There are several decisions the camera could

manage. Additionally, more recent cameras can capture location details, the smart phone cameras

could capture the user’s details/login. This information allows easy sharing across several social

media platforms. Though this is a convenience for the end users, it also means allowing the

machine to take several decisions on the users' behalf. Further, this makes users vulnerable to

systems and mechanisms of control.

The digital camera is an assemblage of algorithms, since algorithms are evolving to map human

experiences mathematically. Moreover, the increase in the number of algorithms used in

programming has drastically transformed human computer interaction. If we look at the

stakeholders in the process of developing camera software, multiple individuals involved in the

117

process are not likely to have the nuanced eye that experts would possess with respect to light,

colour or dynamic range. With an algorithmic discourse, the visual culture practice is

reconfigured depending on the stakeholders or hegemonic forces that define the algorithms or

rules of perceiving through a digital camera.

Entrusting the decisions making apparatus algorithmically to a system, makes it convenient for

an institutional hegemony rather than allowing to “democratize all experiences by translating

them into images” as Sontag (2008) writes. Especially, entrusting the functions of seeing and

remembering in algorithms has made possible for the growth of several social networking

platforms and Internet services, which is now hegemonized by technology giants like Facebook,

Google, Yahoo etc. Only a tiny section of the population have a stake in these large

organisations, whilst a larger section of the population are users of such technologies.

118

References:

Android Developers. Download Android Studio and SDK Tools. [WWW Document] (n.d.)

URL http://developer.android.com/sdk/index.html (accessed 2.23.15).

Barthes, R. (1993) Camera Lucida: Reflections on Photography, Random House Publishers India Pvt.

Limited. New Delhi.

Chun, W. H. K. (2011) Programmed Visions: Software and Memory, MIT Press.

Deleuze, G, Guattari F. (2013) A Thousand Plateaus: Capitalism and Schizophrenia. Bloomsbury

Publishing India Private Limited. London, UK New York, USA.

Dijck, J V. (2008) “Digital photography: communication, identity, memory”, Visual

Communication. 7: 57–76.

Fuchs, C. (2014) “Theorising and analysing digital labour: From global value chains to modes of

production”,. The Political Economy of Communication. 1,2. Available at:

http://www.polecom.org/index.php/polecom/article/view/19/175 [Accessed: 21st February

2015]

Hansen, M.B.N. (2001) “Seeing with the Body: The Digital Image in Postphotography”,

Diacritics. 31(4): 54–84#.

Manovich, L. (2001) The Language of New Media. MIT Press. Cambridge,Massachusetts London,

England.

McCosker, A., Milne, E. (2014) “Coding Labour: Cultural Studies Review. 20 (1) .

doi:10.5130/csr.v20i1.3834: 4-29

OpenCV (n.d.) “ABOUT”, Available at: http://opencv.org/about.html [Accessed: 21st February

2015].

Parker, J.R. (2010) Algorithms for Image Processing and Computer Vision. John Wiley & Sons.

Indianapolis.

Rose, G. (2007) “Visual Methodologies: An Introduction to the Interpretation of Visual

Materials”. SAGE. London.

Sontag, S. (2008) On Photography. Penguin Classics. 01 Edition.

119

The Apache™ Hadoop® project (n.d.) “Welcome to ApacheTM. Hadoop®!”, Available at:

http://hadoop.apache.org/#Who+Uses+Hadoop%3F [Accessed: 21st February 2015] .

Thomas, Barry (n.d.) “Machine Vision”, www.barrythomas.co.uk Available at:

http://www.barrythomas.co.uk/machinevision.html [Accessed: 23rd February 2015].

Uricchio, W. (2011) “The algorithmic turn: photosynth, augmented reality and the changing

implications of the image”, Visual Studies 26(1): 25–35.

Winston, Brian. (2012) “The Documentary Film as Scientific Inscription”. In: Renov, M (eds.):

Theorizing Documentary. Routledge New York, pg. 37-57.

